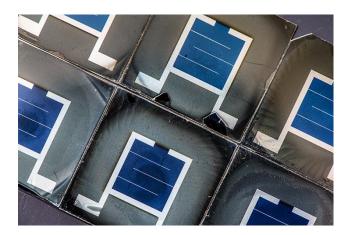
Jim Crimmins CFV Labs Albuquerque, NM

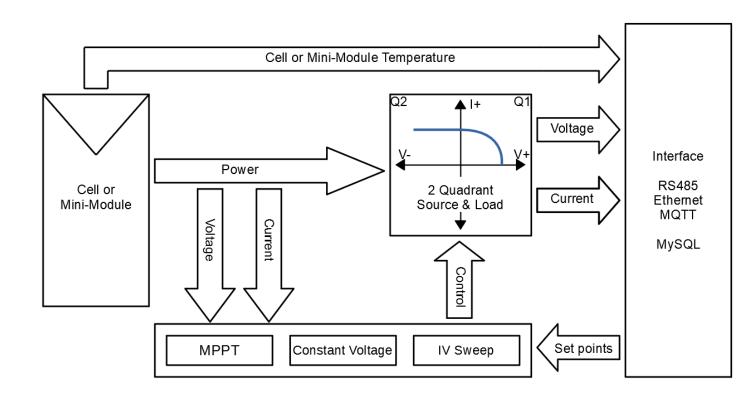
2021-08-11


Instrumentation for Outdoor Testing of Emerging PV Technology: Single Cells and Mini-Modules

Mini-modules for new technologies are emerging, but limited outdoor test equipment is available

- Encapsulated single-cells and minimodules are frequently used to test new designs and materials.
- Mini-modules enable a larger number of prototypes to be manufactured quickly, allowing a larger sample size to be tested and improve the measurement statistics.
- More studies involving outdoor testing are needed to validate the performance of emerging PV technologies, but limited hardware is available for properly characterizing single-cells and mini-modules, especially outdoors.

Encapsulated mini-modules and single-cells are finding their place in outdoor testing.



Accurate and consistent I-V measurements of perovskite solar cells can be a major challenge due to metastability in the device's performance.

What type of equipment is needed to test these devices?

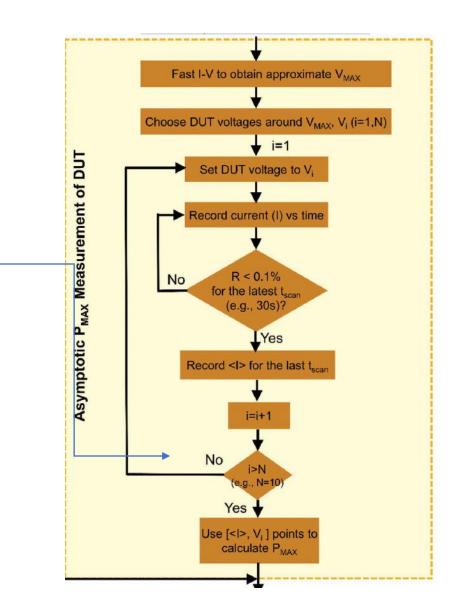
- A combination of tools and measurement techniques, such as MPPT, I-V sweeps, and constant voltage control can be used to provide a more complete performance picture.
- The ability to switch between different loading methods will enable rapid characterization of emerging PV technologies.
- Electronic loads [Keithley, etc.] exist that can be programmed to do this indoors, but they are expensive and not particularly suitable for outdoor use.

CFV Labs

Block diagram visualizing how a two-quadrant source and load can be used to implement MPPT, constant voltage, and IV sweeps in one measurement/load unit.

How is CFV Labs working to solve this problem? We have successfully designed and built an all-in-one outdoor device that can perform these characterization methods and are currently testing it indoors for single cells and mini-modules under constant illumination.

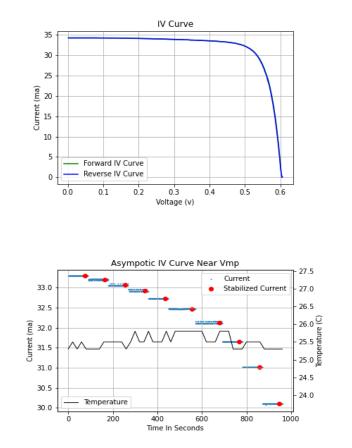
 We can reproduce many emerging technology workflows with this device, a Modbus/USB interface and a Python scripted master control device:

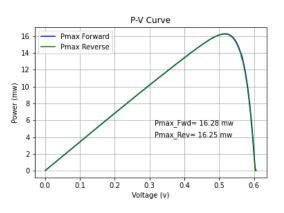

Single-cell prototype hardware designed to test MPPT, constant voltage (CSFV, asymptotic IV) , and IV sweeping.

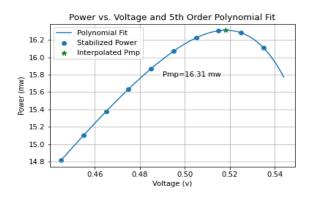
Test Mode	Parameter 1	Parameter 2	Parameter 3	Parameter 4
General	Digital Filtering	Voltage Range	Current Range	
IV Sweep	Number of Points	Sweep Time	Forward/ Reverse	Quadrant 2 Measurement
MPPT	Step Size	Update Interval	Simple Algorithm (P+O)	Complex Algorithm (Predictive, etc)
SCFV	Voltage Range, Number of Voltage Points	Current Measurement Interval	Stability Criteria, Regression Interval	Polynomial fit

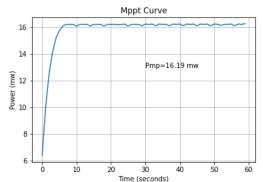
SCFV Asymptotic IV Curve Workflow per

Song, Friedman, Kopidakis 2021


CFV Labs




Example of a relatively complex indoor workflow: Asymptotic IV Curve/SCFV.


Sample Test Results for c-Si WPVS Reference Cell

CFV Labs

C-Si Reference Cell – Measured at CFV Labs

Moving the system outdoors

CFV Labs

16 measurement/load channels per enclosure, integrated power supply, and computer will provide a complete testing unit.

CFV Labs outdoor test rack equipped with irradiance sensors, weather station, and electronic loads specifically designed for mini-modules and cells.

Specification	Parameter 1	Parameter 2	Parameter 3	Parameter 4
I,V Ranges	150ma/250ma/ 500ma/ 1A	3V/6V/12V/24V	16-bit A/D converter	Accuracy +/2% typical
Temperature Measurement	Type K-, J-, N-, T-, S-, R-, or E- thermocouple	18-bit A/D converter	0.05 °C resolution	+/- 1 °C accuracy typical
Card Interface	16 channels	Modbus	16 registers/ch.	115.2 kbps
Operational / Data Logging Options	Campbell – simple functionality	Raspberry Pi – complex functionality	Ethernet/Wi-Fi MQTT	NV data backup Battery backup

CFV Outdoor Test Yard

Contact Us for Questions or Project Inquires

Technical Questions: James Richards James.richards@cfvlabs.com

Project Inquiries: Jim Crimmins jim.crimmins@cfvlabs.com

CFV Labs Albuquerque, NM